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PROFILE OF A CYLINDRICAL SHOCK WAVE AND THE "PEAK" APPROXIMATION* 

V.N. LIKHACHEV 

A solution of the problem of the propagation of an axisymmetric shock wave 
formed as a result of the initial velocity jump is obtained. The solution 
yields a universal characteristic profile of cylindrical shock waves in 
the range of small Mach numbers. In the case of a gas, this range 
corresponds to weak sonic perturbations, while in the case of liquids the 
framework of the approximation given can be used to study underwater 
explosions and intense electric discharges. 

The heuristic peak approximation is often used in computing spherical, 
as well as cylindrical shock waves. According to this approximation the 
pressure drop in the cavity formed as a result of an explosion has an 
exponential time dependence /l, 2/. This relationship enables us to obtain, 
e.g. in the framework of the Kirkwood-Bethe theory, an exponential distri- 
butionoftheparametersinthe normal zone of increased pressure propagating 
directly behind the shock (the "profile" of the shock wave /l/). 

An exponential profile was obtained in /3/ for spherical shock waves 
without any additional assumptions, on the basis of an analytic solution 
of the initial boundary value problem of a spherical piston beginning to 
move with non-zero initial velocity. The solution proves the presence 
of a characteristic profile of spherical shock waves in the range of 
Mach numbers under consideration, unconnected with any specific law 
governing the decrease in pressure inside the cavity, and agrees well /4/ 
with experimental results. Below, a non-exponential profile is obtained 
from cylindrical shock waves. 

The asymptotic method used here was employed earlier in solving the 
problem of a smoothly moving piston /5, 6/, in the study of the capsizing 
of a spherical compression wave /7/ and in a number of other problems. 

1. Formulation of the problem. Asymptotic solution. The motion of a perfect 
medium is described, in the case of spherical symmetry, by the set of equations 

1 
ui -~ UN, = - pp,c”, fl: - ,,!l, -- (1 ,I ~ - ( +_!dJ (1.1) 

where the pressure and density are connected by the barotropy condition, and the speed of sound 

c = VP,. The barotropy condition replaces the energy equation alsc an the shock wave. 
Let a cylindrical axisymmetric cavity of radius rU form at the initial instant, whose 

boundary henceforth will play the part of the piston moving according to the law r = R(f). A 
characteristic feature of shock-type problems is the presence of a discontinuity in the initial 
parameters of the medium caused by the non-zero initial velocity of the piston R'(0) = Cr. 

Let us introduce the dimensionless variables 

where pO. c0 are the density and speed of sound in the unperturbed medium. In dimensionless 
variables system (1.1) becomes 

We shall seek an asymptotic solution to the problem formulated above, regarding the Mach 
number of the unperturbed medium as a small parameter, under the condition R' (I) CJ - 1. 

Using the condition of barotropy when qM*<l. we can carry out the following expansion 
in the equation of motion: 

(C’O -=i~M2qk. i T qV’ 
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The condition on the piston 
tions on the weak shock wave are 

To construct the asymptotic solution, we will introduce two zones, construct the expansions 
in these zones and use the asymptotic matching method to find the arbitrary functions appearing 
in the expansions. The first zone is characterized by short times, and the scales of the 
variables in it are determined by introducing new variables of the order of unity in the 
corresponding zone 

1‘ = UC, 4 = y’ ‘.\I, t = t: .\I. 2 = 5:. (1.4) 

In the second zone the scales of the variables are determined by the expressions 

takes the form z = v (r) and q (0) = 1, d~&‘d~l, = 1. The condi- 

d+* 
x=3T ’ ++-, v,=q,M (1.3) 

V = vi v?z?, q = q’il/.V, T = d, f = x,lhf (i.5) 

This zone corresponds to times of the order of unity, and large distances. The solution 
in the zone (1.5) can be found by matching with the solution in zone (1.4), which can be found 
from the conditions on the piston and on the shock wave. 

The principal term of the expansion in zone (1.4) is described by the system of equations 

The times in the zone (1.4) are short, and therefore the relation R (TOM) = 1 holds for 
the piston velocity in the principal approximation. The condition on the piston in the 
principal approximation is displaced in the zone (1.4) to the line x0= 1,i.e. 

au” a40 -- z= az” 
_c&+g+g_=o (1.6) 

vc (1. C) ? 1 . (1.7) 

Simplifying this condition produces a universal characteristic profile of the shock waves, 
since it only contains the asynqtotic form cf the law of motion of the piston written in 
dimensionless coordinates, in universal form. 

Condition (1.3) in the principal approximation, on the shock wave, is displaced in zone 
(1.4) to the characteristic of the system (1.6):~” = 1 $r”, and matches the condition on the 

characteristic, Solving the ordinary differential equation describing the distribution of 
the parameters along the characteristic, we can obtain the condition on the shock wave in the 
form 

L.: = q _ 1;,r;7, J$ EL * z 1 - rc, (1.S) 

Hence, we obtain the characteristic Ca,c:-.y protle- in zone (1.41, with the data on the 
characteristic. In the simpler case of spherical synmletry, the equations have a solution in 
the form of travelling waves, altio.ugh such a simple scliltion is not possible in the case of 
cylindrical symmetry. Below we use a method suitable for bo+h cases of symmetry. 

2. Constructing a solution in a short time zone in the form of series in 
terms of the characteristic variable. We will seek a solution of the problem (1.6)- 
(1.8) in the fcrm of series in terms of the characteristic variable EC1 -*--t= 

CX _ 
v= = 2 vnc c.r,E", qr= x qnO(I)in. (2.1: 

II=0 ,.=I) 

Substituting these relations intc systen (1.6) we observe that the coefficients of the 
series (2.1) must be sought in the fori: 

Substituting (2.1) and (2.2) into (1.6>, we obtain 

b," = _ .k 7-i + 1 
aa 2i (2.3) 

c,':=_ (2&'JZ & . (2.4) 

The recurrent formula (2.4) yields coefficients with large k, provided that the coef- 
ficients of the preceding step are known. The initial coefficients are found from condition 
(1.8) on the characteristic E = 0 
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from which we obtain 80" = at = l,p,* = a; = O(j>O). Therefore from (2.4) it follows that 

a,' = fljk = 0 when j> k, 

Conditions (1.7) on the piston yield 

,jtk~PjQk4b jg+l, )~p:=o (k>O). (2.5) 

The condition on the piston matches the condition on the characteristic; therefore con- 
ditions (2.3) and (2.5) are also matched. 

To express aO' in terms of the values from the preceding step, we use relations (2.5) 
to obtain 

Formula (2.5) yields 

k--l 
4 

aok=F 2 l,=. (_$_A gg [(2;;)f)!1’ ‘“,;,!“! cc1 . (2.i) 

Expressing aj' in terms of the previous coefficients using the recurrence formula, we 
arrive either at the coefficients ajo, or at aok. The first of these coefficients for-which 
formula (2.7) holds, are a," = hj". We can also obtain from (2.4) 

(2.8) 

Hence, we have found all the coefficients. 
We shall show that series (2.1) converge for all t in the region of flow when &<2. 
First we will show by induction that 

laok / <2-". (2.9) 

We shall assume that condition (2.9) 'holds for all ~<k and prove it for i=k. Let us 
rewrite formula (2.7) in the form 

k-1 
A 

(10 = r , z k-n-1 

(-l/d 
?I+1 (?I + ‘#(n - ‘/*)Z...(~ *)?(“2P =n 

(n - l)n...2.1 k(k - I).. .(h - n) 
n=o 

(2.10) 

Let us estimate Iagh'j. To do this we separate in (2.10) the term corresponding to n=O 
and write for the remaining terms (2n -+ 3)/(2n + I) < V/3, Then 

where Ck' is the number of combinations of k elements taken n at a time. 
The assumption of the induction method impiies the estimate 

k--r 

and we have the following estimate for the sum: 

(2.11) 

(2.12) 

since C;+'>k when ldn<k-2. 

Taking theestimate (2.12) into account we obtain from (2.11) for k>4 inequality (2.9). 
The inequality can be confirmed directly for k = 0, 1, 2, 3 

enO=l, 3 a,'=--, 33 83 
0 %'=K6' Q=-m3 
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and this proves the condition (2.9). 
From (2.8), (2.9) we can obtain the estimate for the remaining coefficients 

Ia;l<la;-jl (2j - i)l! 
4’k(k- l)...(k-_i+l) 

<,+,I'! (k.-- iN - 
2’k! 

1 +I .2+p,j < 21-b/c j 
It' 

This yields the following expression for the coefficients of the second series of (2.1): 

since t>i in the region of flow and the numbers 

k 

c 

1 

j=O 
c,j 

are bounded uniformly in k. 

Consequently the series (2.1) for the pressure certainly converges when r)i,O<Ea 2. 
From (2.3) it follows that IpjLl<41ej'j. This clearly implies that series (2.1) for the 

velocity also converges when s>:,OCE<2. 

3. Pressure and velocity profile of a cylindrical shock wave. Using the 
solution obtained we find the expansion in the zone (1.5) determined by the time intervals of 
the order of unity. Howerver, since in the case of the zone (1.4) the solution is suitable 
up to E = 2 (its further suitability has not been proved), we shall construct the solution 
not over the whole zone (1.5), but within its subregion N (Fig.1) specified by the condition 
~=1-z+sidr-l. It is precisely this zone into which the perturbations are carried from 
zone (1.4) by the characteristics with a positive direction. 

Let us replace, in the zone in question, the coordinate li, xi by 5. I,. System (1.2) 
will now become 

(3.1) 

Both these equations yield, in the principal approximation, the same equation uki= qk’ 
which, taking into account the conditions on the shock wave (l.j),reduces to 

L.l = i 4. (3.3) 

We find, however, that the condition cf matching the subsequent terms of the expansion 
yields another equation connecting the principal terms of the expansion. 

0 
0.5 I 1.5 E,rIM I 

The condition can be 
from (3.2). This yields, 

From (3.3) and (3.4) 

Fig.1 Fig.2 

obtained by multiplying (3.1) additionally by M, and subtracting it 
in the principal approximation, 

Z&+;=_g. I 
1 

F3.4) 

we obtain 

L'i = q’ = R (E,!fif (3.5) 

Matching (3.5) with (2.1) we find a(k). To do this we introduce the auxilliary coordinates 
I1 = 2 1?7. E* = E, The principal term of solution (2.1 j will be written in awilliary CO- 

ordinates in the form 
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This shows that matching takes place when 

We note that matching the densities would give the same 
fib = aOn. 

Finally, the density and velocity profile will take the 
the shock wave, when the times are of the order of unity: 

result, since by virtue of (2.3) 

following form in the zone near 

(3.6) 

As was shown above,theradiusofconvergence of this eeries is not less than two. 

4. Comparison with a spherical shock wave and the "peak" approximation. 
Using the same asymptotic conditions as in the present paper, an expression was obtained in 
/3/ for the profile of a spherical shock wave for an arbitrary law of motion in the form 

q = V’M = e-V(Mz) (4.1) 

If we disregard the difference in the fall of the amplitude between the cylindrical and 
spherical shock wave, which is a well-known fact, we see from (3.6) that in the case of 
cylindrical symmetry the characteristic profile does not obey an exponential relationship and 
for this reason the peak approximation gives an incorrect wave profile. Expanding the ex- 
ponential term in (4.1) in a series, we obtain the following profile for the sperhical wave: 

Q = 1 - 5 T ES,'2 - 5%6 2 . . . (4.2) 

while the profile of the cylindrical shock wave has the form 

(4.3) 

We note that (2.7) implies that the,series (4.3) has alternating signs; therefore the 
error can be easily estimated by restricting ourselves to several terms. 

At a fixed instant of time the variable E will represent the distance between the leading 
perturbation front corresponding to $ = 0, and the point lying at a distance z from the 
centre of symmetry. For this reason formula (3.6) describes the profile of the shock wave in 
terms of a length equal to two initial radii of the piston. According to the formulas (3.6)) 
(4.1) obtained the width of the shock wave does not increase with time, although experiments 
show some increase caused by dissipation. At distance equal to two initial radii the peak 
pressure falls almost tenfold in the case of spherical symmetry, and by almost half in case 
of cylindrical symmetry. In Fig.2 using the variables Q. 5 the upper curve 1 shows the 
profile of a cylindrical shock wave, and curve 3 that of a spherical shock wave. In the 
spherical wave the pressure drops much more rapidly and its width is much smaller than in the 
case of cylindrical symmetry. 

The results obtained can be interpreted somewhat differently, since the characteristic 
profiles (3.6), (4.1) are generated by the motion of the piston at the initial instant. Indeed, 

5-f corresponds to times T-.V in the zone (1.4). In the principal approximation we can 
assume that the boundary of the piston does not vary and is equal to unity in dimensionless 
coordinates. Therefore, we have & = TM at the piston in the zone (1.4). We have the 
following expressions for the pressure at the piston in the case of cylindrical and spherical 
symmetry respectively: 

(4.4)) 

I 
Y’TC- 

1 31 (4.5, 

The series (4.4) converges when ?..?I< 2. 
The lines 2 and S in Fig.2 in the variables q.T’.lf represent the relations (4.41, (4.5). 

In the case of a spherical shock wave its profile (4.1) shows the same exponential relation- 
ship as the decrease in pressure with time at the piston (4.5). In this case the peak approxi- 
mation for the pressure in the cavity is confirmed theoretically. In the case of cylindrical 
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symmetry the wave profile (curve 1) differs from the plot showing the dependence of the pressure 
at the piston on time (curve 2) by 15-20?+1 on average. The law governing the drop in p;essure 
in a cavity differs considerably in the axisynnnetric case from the exponential relation (4.5). 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

The author thanks A.L. Gonor for discussing the problem. 
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DIFFRACTION OF A SINGLE PLANE WAVE BY A V-SHAPED WI#G* 

P.V. TRET'YAKOV 

A linear formulation is used to solve the problem of the diffraction of 
a single plane wave by a V-shaped wing moving at supersonic speed. The 
solution is based on the study of the eigenfunctions for a class of 
selfsimilar solutions of the three-dimensional wave equation. The boundary 
integral is constructed using a method analogous to that discussed in /l/, 
and results obtained in /l-3/ are used. 

1. We shall seek a solution of the wave equation 

(1.1) 

for the homogeneous functions of zero dimensions in t and q = (rzi_ y? 7 z*)'/*. 
It was shown in il./ that knowing the homogeneous solution of zero dimensions and using 

the relation 

we can obtain a uniform solution of dimensions nE fi. Here @,, and a+, are solutions of 
(1.1) uniform in t and g, of dimensions zero and n respectively. 

We have the foilowing representation for the uniform solution Q, of zero dimensions in 
the form of a series in eigenfunctions: 

OE 

.z (A,,,rcosk%~~~,,ksinkhO)G,,k(~~Ql.+kr.(P)] 

k=l 

G!z’k = CF:*',* (cos~+)sin" q 

-4 11, I: 
&, k I = 

2n! (n + kh + l/r) r (k). + ‘id r (24. + 1) x 

T rr,l- (n + 2kl+ 1) P (kl -r 1) 
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